Mathematics Kindergarten ### 2015 Maryland College and Career -Ready Curriculum Framework ## **Contents** | Topic Introduction | Page
Number(s)
4 | |--------------------------------------------------------------|------------------------| | How to Read the Maryland College and Career Ready Curriculum | 4 | | Framework for Kindergarten | · | | Standards for Mathematical Practice | 5-8 | | Key to the Codes | 9 | | Domain: Counting and Cardinality (CC) | 10-13 | | Domain: Operations and Algebraic Thinking (OA) | 14 -15 | | Domain: Number and Operations in Base Ten (NBT) | 16 | | Domain: Measurement and Data (MD) | 17 | | Domain: Geometry (G) | 18– 19 | | Frameworks Vocabulary for Kindergarten | 20-21 | #### Introduction The Maryland College and Career Ready Standards for Mathematics (MDCCRSM) at the kindergarten level specify the mathematics that all students should study as they prepare to be college and career ready by graduation. The kindergarten standards are listed in domains (Counting and Cardinality, Operations & Algebraic Thinking, Number and Operations in Base Ten, Measurement & Data, and Geometry). This is not necessarily the recommended order of instruction, but simply grouped by appropriate topic. For further clarification of the standards, reference the appropriate domain in the set of Common Core Progressions documents found on http://math.arizona.edu/~ime/progressions/ # How to Read the Maryland College and Career Ready Curriculum Framework for Kindergarten Mathematics This framework document provides an overview of the Standards that are grouped together to form the Domains for Kindergarten. The Standards within each domain are grouped by topic and are in the same order as they appear in the Common Core State Standards for Mathematics. This document is not intended to convey the exact order in which the Standards will be taught, nor the length of time to devote to the study of the different Standards The framework contains the following: - **Domains** are intended to convey coherent groupings of content. - **Clusters** are groups of related standards. A description of each cluster appears in the left column along with the standards for that cluster - Standards define what students should understand and be able to do. - Clusters and Standards are identified as Major, Supporting, or Additional clusters or standards - Essential Skills and Knowledge statements provide language to help teachers develop common understandings and valuable insights into what a student must understand and be able to do to demonstrate proficiency with each standard. Maryland mathematics educators thoroughly reviewed the standards and, as needed, provided statements to help teachers comprehend the full intent of each standard. The wording of some standards is so clear, however, that only partial support or no additional support seems necessary. - Standards for Mathematical Practice are listed in the right column. - Framework Vocabulary words in light blue, bold font are defined in the vocabulary section of this document. Page 4 of 21 #### **Standards for Mathematical Practice** The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the NCTM process standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy). #### 1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. **In Kindergarten**, students begin to build the understanding that doing mathematics involves solving problems and discussing how they solved them. Students explain to themselves the meaning of a problem and look for ways to solve it. Younger students may use concrete objects or pictures to help them conceptualize and solve problems. They may check their thinking by asking themselves, —Does this make sense? If or they may try another strategy. #### 2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to *decontextualize*—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to *contextualize*, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. **In Kindergarten,** students begin to recognize that a number represents a specific quantity. Then, they connect the quantity to written symbols. Quantitative reasoning entails creating a representation of a problem while attending to the meanings of the quantities #### 3. Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. **In Kindergarten,** students construct arguments using concrete referents, such as objects, pictures, drawings, and actions. They also begin to develop their mathematical communication skills as they participate in mathematical discussions involving questions like—How did you get that?|| and —Why is that true?|| They explain their thinking to others and respond to others' thinking. #### 4. Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. **In Kindergarten**, students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, acting out, making a chart or list, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. #### 5. Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. **In Kindergarten,** students begin to consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, kindergarteners may decide that it might be advantageous to use linking cubes to represent two quantities and then compare the two representations side-by-side. #### 6. Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. **In kindergarten**, students begin to develop their mathematical communication skills, they try to use clear and precise language in their discussions with others and in their own reasoning #### 7. Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5-3 (x-y)as 5 minus positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. **In kindergarten**, students begin to discern a number pattern or structure. For instance, students recognize the pattern that exists in the teen numbers; every teen number is written with a 1 (representing one ten) and ends with the digit that is first stated. They also recognize that 3 + 2 = 5 and 2 + 3 = 5. #### 8. Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y-2)/(x-1) = 3. Noticing the regularity in the way terms cancel when expanding (x-1)(x+1), $(x-1)(x_2+x+1)$, and $(x-1)(x_3+x_2+x+1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. **In kindergarten**, students notice repetitive actions in counting and computation, etc. For example, they may notice that the next number in a counting sequence is one more. When counting by tens, the next number is ten more(or one more group of ten). In addition, students continually check their work by asking, "Does this make sense?" #### Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction. The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics. #### Codes for Common Core State Standards (Math) Standards - K - 12 | Grades K | - 8 | Applicable Grades | |------------|---------------------------------------------------|---------------------------| | CC | Counting & Cardinality | K | | EE | Expressions & Equations | 6, 7, 8 | | F | Functions | 8 | | G | Geometry | K, 1, 2, 3, 4, 5, 6, 7, 8 | | MD | Measurement & Data | K, 1, 2, 3, 4, 5 | | NBT | Number & Operations (Base Ten) | K, 1, 2, 3, 4, 5 | | NF | Number & Operations (Fractions) | 3, 4, 5 | | NS | Number System | 6, 7, 8 | | OA | Operations & Algebraic Thinking | K, 1, 2, 3, 4, 5 | | RP | Ratios & Proportional Relationship | 6, 7 | | SP | Statistics & Probability | 6, 7, 8 | | Modeling | | | | No Codes | | Not determined | | | High School | | | Algebra (A | Α) | | | A-APR | Arithmetic with Polynomial & Rational Expressions | 8 -12 | | A-CED | Creating Equations | 8 -12 | | A-REI | Reasoning with Equations & Inequalities | 8 -12 | | A-SSE | Seeing Structure in Expressions | 8 -12 | | Function | s (F) | | | F-BF | Building Functions | 8 -12 | | F-IF | Interpreting Functions | 8 -12 | | F-LE | Linear, Quadratic & Exponential Models | 8 -12 | | F-TF | Trigonometric Functions | Not determined | | Geometry | / (G) | | | G-C | Circles | Not determined | | G-CO | Congruence | Not determined | | G-GMD | Geometric Measurement & Dimension | Not determined | | G-MG | Modeling with Geometry | Not determined | | G-GPE | Expressing Geometric Properties with Equations | Not determined | | G-SRT | Similarity, Right Triangles & Trigonometry | Not determined | | Number 8 | & Quantity (N) | | | N-CN | Complex Number System | Not determined | | N-Q | Quantities | Not determined | | N-RN | Real Number System | 8 -12 | | N-VM | Vector & Matrix Quantities | Not determined | | Statistics | (S) | | | S-ID | Interpreting Categorical & Quantitative Data | 8 -12 | | S-IC | Making Inferences & Justifying Conclusions | Not determined | | S-CP | Conditional Probability & Rules of Probability | Not determined | | S-MD | Using Probability to Make Decisions | Not determined | | Modeling | | | | No Codes | | Not determined | | Domain: Counting and Cardinality | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------| | Cluster and Standard | | Mathematical Practices | | Major Cluster K.CC.A-Know number names and the count sequence. Major Standard: K.CC.A.1 Count to 100 by ones and by tens. | 1. | Make sense of problems and persevere in solving them. | | Essential Skills and Knowledge Ability to use rote counting (e.g., simply reciting numbers using the correct number order with no meaning attached) to one hundred (first to 20, then count by tens to 100, then 1-50, then 1-100) Ability to make transitions to the next ten | | Reason abstractly and quantitatively. Construct viable | | Major Standard: K.CC.A.2 Count forward beginning from a given number within the known sequence (instead of having to begin at 1). | 4. | arguments and critique the reasoning of others. Model with mathematics. | | Essential Skills and Knowledge Ability to initially use concrete materials, hundreds chart or number line to model counting from a given number other than 1 Knowledge that counting is the process of adding 1 to the previous number | | Use appropriate tools strategically. Attend to precision. | | Major Standard: K.CC.A.3 Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects). | 7. | Look for and make use of structure. | | Essential Skills and Knowledge Ability to match a set with a number card that states its' quantity Ability to build numbers with concrete materials and then write the numerals that represent those numbers Knowledge that zero represents an empty set | 8. | Look for and express regularity in repeated reasoning. | | | | | | | | | #### **Domain: Counting and Cardinality Mathematical** Cluster and Standards **Practices** Major Cluster K.CC.B-Count to tell the number of objects. 1. Make sense of problems and persevere in Major Standard K.CC.B.4: solving them. Understand the relationship between numbers and quantities; connect counting to cardinality. 2. Reason abstractly and **Essential Skills and Knowledge** quantitatively. Knowledge that **cardinality** is the understanding that when counting a set, the last number represents the total number of the 3. Construct viable objects in the set arguments and Understand that cardinality gives meaning to the numeral and tells critique the the quantity the number represents reasoning of others. 4. Model with mathematics. Major Standard: K.CC.B.4a When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each 5. Use appropriate number name with one and only one object.(one to one tools strategically. correspondence) 6. Attend to **Essential Skills and Knowledge** precision. Ability to apply one-to-one correspondence when counting Ability to keep track of which objects have been counted from those 7. Look for and that have not been counted. make use of Recounts the objects just counted to see if the count is the same structure. without prompting. Notices if a recount of objects are different and self corrects by 8. Look for and recounting express regularity in repeated Major Standard: K.CC.B.4b reasoning. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted. **Essential Skills and Knowledge** Knowledge of and ability to apply Cardinality (e.g., the understanding that when counting a set, the last number counted represents the total number of the objects in the set) Knowledge of and ability to apply conservation of number (e.g., ability to understand that the quantity of a set does not change, no matter how the objects of the set are displayed) Ability to apply **Subitizing** (e.g., the ability to immediately recognize a quantity) when counting objects #### **Domain: Counting and Cardinality Cluster and Standards** Mathematical **Practices** Major Cluster K.CC.B-Count to tell the number of objects. 1. Make sense of problems and persevere in Major Standard: K.CC.B.4csolving them. Understand that each successive number name refers to a quantity that is one larger. 2. Reason abstractly and **Essential Skills and Knowledge** quantitatively. Knowledge that when one more is added to a number set, this new number includes all the previous objects in the set, plus the new 3. Construct viable one. (e.g., 6+1=7) arguments and critique the Major Standard: K.CC.B.5 reasoning of others. Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out 4. Model with that many objects. mathematics. **Essential Skills and Knowledge** 5. Use appropriate Recognizes that the last number counted tells the amount of the tools strategically. entire group. Focuses on the total quantity of the group just counted. 6. Attend to Does not need to recount the objects in a set when they have precision. given the number name of the last object counted. 7. Look for and make **Further Clarification for K.CC.B.5** use of structure. *Asking students to 'count out' a quantity is a different process than counting a set of objects. 8. Look for and express There are two different, but similar situations. regularity in repeated First, is when a child is asked to get a number of objects. For example, Get 8 reasoning. pencils. The student needs to hold that number in their head and count the objects using one-to-one correspondence to count enough pencils. Secondly, students may be asked to count out enough pencils for their table, they need to first count the number of children, including them self, then hold that number in their head before they count out the number of pencils. In both cases, the number must have meaning to the student so they can remember it while they are counting out the pencils. When students can do that, they have moved beyond numbers as one, and one, and one to understand the quantity the number name or symbol represents. | Domain: Counting and Cardinality | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------| | Cluster and Standard | | Mathematical Practices | | Major Cluster K.CC.C- Compare numbers Major Standard: K.CC.C.6 Identify whether the number of objects in one group is greater than, less than, or equal to the number of objects in another group, e.g., by using | | Make sense of problems and persevere in solving them. | | matching and counting strategies (Include groups with up to ten objects). Essential Skills and Knowledge | 2. | abstractly and quantitatively. | | Knowledge of and the ability to apply a solid understanding of cardinality and one-to-one correspondence before beginning to compare sets Ability to use of concrete materials when comparing sets | 3. | Construct viable arguments and critique the reasoning of others. | | Ability to compare visually, to compare by matching, and to compare by counting | | Model with mathematics. Use appropriate | | Major Standard: K.CC.C.7 Compare two numbers between 1 and 10 presented as written numerals. | | tools strategically. | | Essential Skills and Knowledge Ability to apply knowledge of and experience with comparing concrete sets of objects (K.CC.6) | 6. | Attend to precision. | | | 7. | Look for and make use of structure. | | | 8. | Look for and express regularity in repeated reasoning. | | | | | #### Cluster and Standard **Mathematical Practices** Cluster K.OA.A-Understand addition as putting together and 1. Make sense of adding to, and understand subtraction as taking apart and problems and persevere in taking from. solving them. Major Standard: K.OA.A.1 Represent addition and subtraction with objects, fingers, mental 2. Reason images, drawings, sounds (e.g., claps), acting out situations, or verbal abstractly and explanations, expressions, or equations. quantitatively. **Essential Skills and Knowledge** 3. Construct viable Ability to represent addition and subtraction processes in a arguments and variety of ways, using concrete materials, pictures, numbers, critique the words, or acting it out reasoning of others. Knowledge that "putting together" and "adding to" are two 4. Model with different processes of addition mathematics. • Knowledge that "taking apart" and "taking from" are two different processes of subtraction 5. Use appropriate tools strategically. Major Standard: K.OA.A.2 6. Attend to Solve addition and subtraction word problems, and add and subtract precision. within 10, e.g., by using objects or drawings to represent the problem. 7. Look for and **Essential Skills and Knowledge** make use of Ability to represent the process of solving various types of structure. addition and subtraction word problems (CCSS, Page 88, Tale 1) within 10 using objects and drawings to develop number 8. Look for and sentences express Knowledge of the different types of word problems (e.g., add to, regularity in result unknown; take from, result unknown; put repeated together/take apart, total unknown) which lays the foundation for more difficult word problems reasoning. • Ability to use concrete materials or pictures and a Part-Part-Whole Mat to organize the manipulatives and make sense of the Solves problems using a variety of counting strategies (counting all, counting on, skip counting) progressing to more sophisticated mental math strategies and using known addend combinations. #### Mathematical **Cluster and Standard Practices** Major Standard: K.OA.A.3 1. Make sense of Decompose numbers less than or equal to 10 into pairs in more than one problems and way, e.g., by using objects or persevere in drawing, and record each decomposition by a drawing solving them. or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1). 2. Reason **Essential Skills and Knowledge** abstractly and Knowledge that **decomposition** involves separating a number quantitatively. into two parts and understanding that there is a relationship between the sum of the parts and the whole 3. Construct viable Knowledge that there are a variety of combinations that represent arguments and a given number critique the Ability to begin with the whole when decomposing numbers into reasoning of others. Knowledge that when writing an equation to represent the 4. Model with decomposition of a number, the values on each side of the equal mathematics. sign are the same (e.g., 7 = 2 + 5) 5. Use appropriate tools strategically. Major Standard: K.OA.4 For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings and record the 6. Attend to answer with a drawing or equation. precision. **Essential Skills and Knowledge** 7. Look for and • Ability to use experience with K.OA.A.3 to make sense of this make use of Standard structure. Use ten frames to find how many more is needed to make 10. Knows the combinations to make 10 8. Look for and express Major Standard: K.OA.5 regularity in Fluently add and subtract within 5. repeated reasoning. **Essential Skills and Knowledge** Ability to apply decomposition knowledge and relationship between addition and subtraction to determine the sum or differences of various problems. Knows the composition and decomposition to make 5 fluently. | Domain: Number and Operations in Base Ten | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------| | Cluster and Standard | | Mathematical
Practices | | Major Cluster K.NBT.A-Work with numbers 11-19 to gain foundations for place value. | 1. | Make sense of problems and persevere in solving them. | | Major Standard: K.NBT.A.1 Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and | | Reason abstractly and quantitatively | | one, two, three, four, five, six, seven, eight, or nine ones. Essential Skills and Knowledge • Ability to rote count by 10s • Use multiple concrete materials to make groups of 10 and count | | Construct viable arguments and critique the reasoning of others. | | Use multiple concrete materials to make groups of 10 and count the groups. Ability to use concrete materials (e.g., Unifix cubes, snap cubes, Digi-blocks, base ten blocks, etc.) to represent the combination of | | Model with mathematics. | | one ten and ones for each number Ability to record the representations of 11 through 19 in pictures, numbers, and/or equations to show 1 ten and x ones Understand 11-19 represents one group of ten and x ones. | 5. | Use appropriate tools strategically. | | oriderstand in represents one group of terraind x ones. | | Attend to precision. | | | 7. | Look for and make use of structure. | | | 8. | Look for and express regularity in repeated reasoning. | | | | | | Domain: Measurement & Data | | |---|------------------------| | Cluster and Standard | Mathematical Practices | | Additional Cluster K.MD.A-Describe and compare measureable attributes. | persevere in | | Additional Standard: K.MD.A.1 Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. Essential Skills and Knowledge Ability to use measurement and geometric vocabulary when describing the attributes of objects Participates in multiple experiences using nonstandard measurement to distinguish between length and weight. Additional Standard: K.MD.A.2 Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter. Essential Skills and Knowledge Reference Essential Skills and Knowledge in K.MD.B.3 prior to making comparisons Reference Essential Skills and Knowledge in K.CC.C.6 for building the understanding of vocabulary "more of/less of" Supporting Cluster K.MD.B- Classify objects and count the number of objects in each category. Supporting Standard:K.MD.B.3 Classify objects into given categories; count the number of objects in each category and sort the categories by count (Limit category counts to be less than or equal to 10.). Essential Skills and Knowledge Ability to sort objects by a given attribute Ability to classify objects by predetermined categories related to | • | | Domain: Geometry | | | |---|--|--| | Cluster and Standard | Mathematical Practices | | | Additional Cluster K.G.A-Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). Additional Standard K.G.A.1 | Make sense of problems and persevere in solving them. | | | Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. | Reason abstractly and quantitatively. | | | Essential Skills and Knowledge Ability to use geometric vocabulary when describing objects Ability to use terms of relative positions when describing objects in the environment Additional Standard: K.G.A.2 Correctly name shapes regardless of their orientations or overall size. | 3. Construct viable arguments and critique the reasoning of others.4. Model with mathematics. | | | Essential Skills and Knowledge Ability to name the various shapes regardless of their orientation or overall size.(squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). | 5. Use appropriate tools strategically.6. Attend to | | | Additional Standard: K.G.A.3 Identify shapes as two-dimensional (lying in a plane, "flat") or three-dimensional ("solid"). | precision. 7. Look for and make use of structure. | | | Essential Skills and Knowledge Ability to sort a variety of shapes into two-and three-dimensional categories and explain why their sorting is correct | 8. Look for and express regularity in repeated reasoning. | | | | | | | | | | | | Dago 19 o | | | Domain: Geometry | | | |---|--|--| | Cluster and Standard | Mathematical Practices | | | Additional Cluster K.G.B-Analyze, compare, create, and compose shape | Make sense of problems and persevere in solving them. | | | Additional Standard: K.G.B.4 Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (e.g., number of sides and vertices/"corners") and other attributes (e.g., having sides of equal | 2. Reason abstractly and quantitatively. | | | length). Essential Skills and Knowledge Identify and compare like and unlike shapes Identify, analyze and compare shapes of different sizes and orientations. Describe similarities and differences, of the parts of the shapes. Name the shapes | 3. Construct viable arguments and critique the reasoning of others.4. Model with mathematics. | | | Additional Standard: K.G.B.5 Model shapes in the world by building shapes from components (e.g., sticks and clay balls) and drawing shapes. | 5. Use appropriate tools strategically. | | | Use unit blocks and other shapes in the classroom or real world as a model for making 3-dimensional shapes out of clay balls and sticks, or marshmallows and straws, etc. Identify 2-dimensional shapes that make up 3-dimensional shapes. | 6. Attend to precision.7. Look for and make use of structure. | | | Additional Standard: K.G.B.6 Compose simple shapes to form larger shapes. For example, "Can you join these two triangles with full sides touching to make a rectangle?" Essential Skills and Knowledge | 8. Look for and express regularity in repeated reasoning. | | | Ability to use concrete materials (e.g. pattern blocks, tangrams, and shape models to build composite figures Ability to explain how they composed their shape and name what shapes they used to make the composite shape | | | #### **Vocabulary for Curriculum Framework for Kindergarten** **Rote counting:** reciting numbers in order from memory without aligning them to objects, pictures, etc. **Cardinality:** is the understanding that when counting a set, the last number represents the total number of objects in the set. Example: This is a set of 3 stars. **One-to-one correspondence:** linking a single number name with one object--and only one--at a time. **Conservation of number:** the ability to understand that the quantity of a set does not change, no matter how the objects of the set are displayed or moved around. **Subitizing:** the ability to recognize the total number of objects or shapes in a set without counting. Example: Recognizing that this face of a cube has five dots without counting them. **Represent:** display addition or subtraction processes using concrete materials, pictures, numbers, words, or acting it out. Part-Part-Whole Mat: a mat used to organize concrete materials to make sense of a problem. Examples: **Decomposition:** breaking a number into two or more parts to make it easier with which to work. Example: When combining a set of 5 and a set of 8, a student might decompose 8 into a set of 3 and a set of 5, making it easier to see that the two sets of 5 make 10 and then there are 3 more for a total of 13. Decompose the number 4; can be made up of 1+3; 3+1; 2+2 Compose numbers-combine numbers in a variety of ways to make a given number Example: 6 can be composed of 5+1, 1+5, 4+2, 2+4, 3+3=6 And 3+2+1=6, 1+1+1+2=6 etc. *Composite:* a figure that is made up of two or more geometric figures. Example: